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Abstract. Here we look at the Markov equations ax2 + by2 + cz2 = dxyz
with integer solutions (x, y, z) which are all members of a Lucas sequence whose

characteristic equation has roots which are quadratic units.

1. Introduction

The Markov equation is the equation

x2 + y2 + z2 = 3xyz.

It is known that it has infinitely many positive integer solutions (x, y, z). Letting
{Fn}n≥0 be the Fibonacci sequence F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for all
n ≥ 0, the identity

1 + F 2
2n−1 + F 2

2n+1 = 3F2n−1F2n+1

implies that (1, F2n−1, F2n+1) is a solution of the Markov equation for all positive
integers n ≥ 2. Up to identifying F2 with F1, these ones are the only solutions of
the Markov equation whose components are Fibonacci numbers as shown by Luca
and Srinivasan in [3]. Tengely [6] studied triples of positive integers (x, y, z) whose
components are Fibonacci numbers such that

(1) ax2 + by2 + cz2 = dxyz

for a few other specific choices of coefficients (a, b, c, d) such as

(2) (1, 1, 1, 1), (1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 5, 5), (1, 2, 3, 6).

He proved that there are only sporadic solutions (finitely many) and he found them
all. The largest component of any solution in Fibonacci numbers is at most 5. His
method involved finding integer points on several elliptic curves. The choices of
coefficients shown at (2) were first studied by Rosenberger in [4]. He showed that
these are the only choices of coefficients (a, b, c, d) which are positive integers and
satisfy gcd(a, b) = gcd(a, c) = gcd(b, c) = 1 and all of a, b, c divide d such that
furthermore equation (1) has infinitely many positive integer solutions (x, y, z).

The Pell sequence {Pn}n≥0 is given by P0 = 0, P1 = 1 and Pn+2 = 2Pn+1 + Pn

for all n ≥ 0. The identity

P 2
2 + P 2

2n−1 + P 2
2n+1 = 3P2P2n−1P2n+1

shows that there exist infinitely many solutions of the Markov equation whose
components are Pell numbers. It turns out that, like in the case of the Fibonacci
numbers, the triples (P2, P2n−1, P2n+1) for positive integers n are the only solutions
of the Markov equation whose components are Pell numbers. This has been proved
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independently in [1] and [5]. The proofs from [6] rely heavily on calculations of
integer points on elliptic curves, while the proofs from [1], [3] and [5] rely on iden-
tities with Fibonacci and Pell numbers. Here, we look at the general equation (1),
where a, b, c, d are given positive integers. We put

A := max{a, b, c, d, 2}.
We let s ∈ {±1}, r ≥ 1 be an integer and {Un(r)}n≥0 be the Lucas sequence given
by U0(r) = 0, U1(r) = 1 and Un+2(r) = rUn+1(r) + sUn(r) (when r = 1, 2, we
only allow s = 1 and not s = −1). Unless we want to emphasise r, we will drop the
dependence on r in what follows in order to ease the notation. We also put {Vn}n≥0
for the companion Lucas sequence of {Un}n≥0 which satisfies V0 = 2, V1 = r and
Vn+2 = rVn+1 + sVn for all n ≥ 0. We assume that (x, y, z) = (Uk, Um, Un) is a
solution of equation (1). We also assume that k ≤ m ≤ n. Note that we do not
assume any particular ordering on a, b, c, so we can always permute the coefficients
a, b, c in the left–hand side of equation (1) so that to assume that k ≤ n ≤ m. Put
i := n−m. Let α be the largest solution of the characteristic equation x2−rx−s = 0.
We put φ := (1 +

√
5)/2 and α ≥ φ. Note that x = y = z = 1 (so k = m = n = 1)

is always a solution provided that a + b + c = d regardless of r. We call this the
trivial solution. Now we have the following result.

Theorem 1.1. All quadruples (r, s, k,m, n), s ∈ {±1} with the property that
(x, y, z) = (Uk, Um, Un) is a nontrivial solution of equation (1) with k ≤ m ≤ n
satisfy the following conditions:

(1)

k ≤ max{11, 8 + log(70A4)/ logα},
i ≤ max{15 + logA/ logα, 12 + log(70A5)/ logα.

(2) In addition, one of the following holds:
(2.i) All of the following conditions hold:

b = c, s = 1, i ≡ 0 (mod 2), aU2
k = cU2

i , dUk/b = Vi, n ≡ 1 (mod 2),

in which case also r < 2A. Furthermore, if this is the case, then for
any n > i odd, the triple (x, y, z) = (Uk, Un−i, Un) satisfies (1), or

(2.ii) Not all conditions from (2.i) above hold, in which case

n ≤ 47 + log(106A15)/ logα.

Furthermore, in this case we also have r ≤ max{106A15, 2105A}.

Note that part (2.i) of Theorem 1.1 gives us that for any sequence {Un(r)}n≥0
with s = 1 there are coefficients (a, b, c, d) such that relation (1) holds for infinitely
many (x, y, z) = (Uk, Um, Un). Indeed, take i even, (a, b, c, d) := (Ui, Ui, Ui, Vi),
then (k,m, n) = (i, n− i, n) gives a valid solution for any n > i odd.

Our proof is elementary that is, it only uses the Binet formula for {Un}n≥0 and
some calculations.

2. The proof of Theorem 1.1

Put ∆ := r2 + 4s, then

(α, β) :=

(
r +
√

∆

2
,
r −
√

∆

2

)
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are the two roots of the characteristic equation x2−rx−s = 0 of our Lucas sequence.
Clearly, α > 1 and β = −s/α = ±α−1. The Binet formula for Un is

(3) Un =
αn − βn

α− β
for all n ≥ 0.

The inequality

(4) αn−2 ≤ Un < αn

holds for all n ≥ 1 and can be proved easily by induction. Assume now that
(x, y, z) = (Uk, Um, Un) is a solution of equation (1).

Lemma 2.1. We have

−6− log(3A)

logα
≤ n− (m+ k) ≤ 4 +

logA

logα
.

Proof. This is immediate from inequality (4). Indeed, we have

α2(n−2) ≤ U2
n = z2 ≤ ax2 + by2 + cz2 = dxyz ≤ Aαn+m+k;

3Aα2n ≥ 3AU2
n = 3Az2 = ax2 + by2 + cz2 = dxyz ≥ α(n−2)+(m−2)+(k−2),

and the desired inequalities follow by manipulating the above inequalities and taking
logarithms. �

We next bound k. The argument only involves the elementary estimates given
by Lemma 2.1 as well as a norm calculation in the quadratic field Q[

√
∆].

Lemma 2.2. One of the following holds:

(i) α2k−16 ≤ 40A3;
(ii) α < 4A and α2k−16 < 4900A8;

(iii) α ≥ 4A, n−m− k = −1 and k ≤ 11.

Proof. We write the right–hand side of equation (1) as

dxyz = dUkUmUn =
dαk+m+n

∆3/2
(1+ζk)(1+ζm)(1+ζn), ζ` := −

(
β

α

)`

, ` = k,m, n.

Since |ζ`| = 1/α2` ≤ 1/α2k for ` ∈ {k,m, n}, it follows that

(5) (1 + ζk)(1 + ζm)(1 + ζn) =: 1 + ζ, where |ζ| ≤ 7

α2k
.

We write the left–hand side as

ax2 + by2 + cz2 = cz2
(

1 +
ax2 + by2

cz2

)
=
cα2n

∆
(1 + ζn)2(1 + ζ ′), ζ ′ :=

ax2 + by2

cz2
.

Now by Lemma 2.1, we have

ζ ′ ≤ 2AU2
m

U2
n

<
2Aα2m

α2n−4 =
2A

α2(n−m)−4 <
18A3

α2k−16 ,

where we used the fact that αn−m > αk−6/(3A), which is given by Lemma 2.1.
Thus,

(1 + ζn)2(1 + ζ ′) = 1 + ζ ′′,
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where

|ζ ′′| <
3

α2k
+

18A3

α2k−16 +

(
3

α2k

)(
18A3

α2k−16

)
=

1

α2k−16

(
3

α16
+ 18A3 +

(
3

α16

)
(18A3)

)
<

20A3

α2k−16 ,(6)

where we used the fact that α16 ≥ ((1 +
√

5)/2)16 > 100. We assume that (1) of
the lemma does not hold so

(7) α2k−16 > 40A3.

Thus, |ζ ′′| < 1/2. Since in this case k > 8, it follows that |ζ| < 7/α2k < 1/2. In
the equation

cα2n

∆
(1 + ζ ′′) =

dαn+m+k

∆3/2
(1 + ζ),

we have 1 + ζ ′′, 1 + ζ ∈ (1/2, 3/2). Simplifying the above relation as

c∆1/2αn−(m+k)(1 + ζ ′′) = d(1 + ζ),

we get that

(8) c∆1/2αn−(m+k)/d ∈ [1/3, 3].

In particular,

|c∆1/2αn−(m+k) − d| ≤ d|ζ|+ c∆1/2αn−(m+k)|ζ ′′|
< A|ζ|+ 3A|ζ ′′|

<
7A

α2k
+

60A4

α2k−16

<
61A4

α2k−16 .(9)

From here we distinguish three cases.

Case 1. The case when n ≥ m+ k.

From (8), we deduce that ∆1/2 ≤ ∆1/2αn−(m+k) ≤ d/c ≤ 3A. From the fact
that ∆1/2 = α− β, we get that

(10) α < 4A.

Further, we note that c∆1/2αn−(m+k) − d 6= 0, since either n = m+ k and ∆1/2 is
not rational or n > m+ k and α2(n−(m+k)) is not rational. Thus,

(11) | − c∆1/2βn−(m+k) − d| ≤ c∆1/2 + d ≤ 4d ≤ 4A.

Multiplying (9) and (11), we get

1 ≤ |(c∆1/2αn−(m+k) − d)(−c∆1/2βn−(m+k) − d)| ≤ 244A5

α2k−16 .

The left-most inequality above follows from the fact that the number inside the
absolute value is the norm of the non-zero algebraic integer c∆1/2αn−(m+k) − d in
the quadratic field K := Q[

√
∆] and as such it is at least as large as 1. So,

(12) α2k−16 ≤ 244A5.

Case 2. The case n− (m+ k) ≤ −2.



MARKOV TYPE EQUATIONS WITH SOLUTIONS IN LUCAS SEQUENCES 5

In this case, inequality (8) gives α2 ≤ α(m+k)−n ≤ (3c/d)∆1/2 ≤ 3A(α + 1),
which gives

(13) α < 4A,

and so ∆1/2 < α+ 1 < 5A. Thus, α(m+k)−n ≤ (3c/d)∆1/2 < 15A2. Now

(14) | − c∆1/2βn−(m+k) − d| ≤ c∆1/2α(m+k)−n + d < A(5A)(15A2) +A < 76A4.

Multiplying (9) with (14), we get

1 ≤ |(c∆1/2αn−(m+k) − d)(−c∆1/2βn−(m+k) − d)| < 4636A8

α2k−16 ,

so

(15) α2k−16 < 4636A8.

Case 3. The case when n− (m+ k) = −1.

If

(16) α < 4A,

then ∆1/2 < α+ 1 < 5A. In this case,

|−c∆1/2βn−(m+k)−d| = |−c∆1/2β−1−d| ≤ c∆1/2α+d ≤ A(4A)(5A)+A < 21A3,

therefore

1 ≤ |(c∆1/2αn−(m+k) − d)(−c∆1/2βn−(m+k) − d)| < 1281A7

α2k−16 .

This last inequality leads to

(17) α2k−16 < 1281A7.

Assume next that α > 4A. Then ∆1/2 = α− β < α+ 1 < 2α. In this last case, we
have

| − c∆1/2βn−(m+k) − d| = | − c∆1/2β−1 − d| ≤ c∆1/2α+ d < A(2α2) +A < 3Aα2.

Multiplying the above inequality with (9), we get

1 ≤ |(c∆1/2αn−(m+k) − d)(−c∆1/2βn−(m+k) − d)| ≤ 183A5

α2k−18 ,

which yields

α2k−18 < 183A5.

Since α > 4A, it follows that 2k − 18 < 6, so k ≤ 11. �

From Lemma 2.2, we get that k is bounded. That is, either k ≤ 11 (in case (iii))
or k ≤ 8 + log(70A4)/ logα (in cases (i) and (ii)). This gives the upper bound for
k from estimate (1) of Theorem 1.1. Note that

(18) k ≤ 11 + log(70A4)/ logα

holds in all cases. By Lemma 2.1, recalling that i := n−m, we get that

i ≤ 4 + k + logA/ logα,

which together with the bound on k gives the upper bound from (1) of Theorem
1.1. Note that

(19) i ≤ 15 + log(70A5)/ logα
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always holds. This finishes the proof of part (1) of Theorem 1.1. We next move to
the proofs of part (2) of Theorem 1.1.

The equation has become

(20) aU2
k + bU2

n−i + cU2
n = dUkUn−iUn,

where k and i are bounded. If α ≤ 4A, then also r is bounded. If α > 4A, we don’t
know yet that A is bounded. To continue, we recall the following known property.

Lemma 2.3. We have

(21) U2
n − Un+iUn−i = (−s)n−iU2

i .

Proof. Easy calculation using the Binet formula (3). �

Identity (21) implies that Un−i | cU2
n− c(−s)n−iU2

i . From equation (20), we also
have that Un−i | cU2

n + aU2
k . Thus,

(22) Un−i | aU2
k + c(−s)n−iU2

i .

Since k and i are bounded and Un−i ≥ αn−i−2 ≥ φn−i−2, it follows that also n
is bounded unless the expression from the right–hand side of divisibility relation
(22) above is 0. Thus, if the expression from the right–hand side of (22) above is
not zero, we should get the conclusions from (2.ii) of Theorem 1.1. Let us see this
argument. If the above expression is not zero, then

αn−i−2 ≤ Un−i ≤ 2Aα2max{i,k} ≤ 104A10α30

(see estimates (18), (19)), which gives

αn ≤ 104A10α32+i ≤ (104A10)(70A5)α47 = 106A15α47

(again by (19)), which gives the bound on n from (2.ii) of Theorem 1.1. If

(23) r ≤ 106A15

we then get the second part of (2.ii). Assume next that estimate (23) does not
hold. Then α > r− 1 ≥ 106A15, so n ≤ 47, k ≤ 11 and i ≤ 15. In this last case, all
three k, n,m are bounded. Fixing these three data, the equation

aU2
n(r) + bU2

m(r) + cU2
n(r)− dUk(r)Um(r)Un(r) = 0

is one of two (according to whether s = ±1) polynomial equations in r. It remains
to show that this is not the zero polynomial. This is the content of the next lemma.

Lemma 2.4. If a, b, c, d and m,n, k are fixed positive integers, then for s ∈ {±1}
the polynomial

(24) aUk(r)2 + bUm(r)2 + cUn(r)2 − dUk(r)Um(r)Un(r)

is not the zero polynomial in r except for a+ b+ c = d and k = m = n = 1.

Proof. The polynomial Un(r) as a polynomial in r has degree n− 1 and is monic.
Further, Un(0) = 0 for n even and Un(0) = ±1 for n odd. These can be checked
easily. Thus, if the relation

(25) aUk(r)2 + bUm(r)2 + cUn(r)2 = dUk(r)Um(r)Un(r)

holds as an equality of polynomials, then the polynomial on the left has degree 2n−2
and the polynomial on the right has degree n+m+k−3. Thus, 2n−2 = n+m+k−3,
which gives n = m + k − 1. Assume first that n = m. Then k = 1. Thus, Un(r)
divides a, which is a constant non-zero polynomial, which gives n = m = 1. This
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is the trivial solution mentioned in the statement of the lemma. From now on, we
assume that n > m. Comparing leading terms we get c = d. Evaluating in 0, we
get

(26) aUk(0)2 + bUm(0)2 + cUn(0)2 = ±cUk(0)Um(0)Un(0).

Since n + m + k = 2(m + k) − 1, it follows that either all n,m, k are odd, or two
are even and the third is odd. If all of them are odd, the above relation (26) gives
a + b + c = ±c, a contradiction. If two of k,m, n are even and the third is odd,
then two of the numbers Uk(0), Um(0), Un(0) are zero and the third one is ±1,
and again relation (26) is impossible. �

One can prove, by induction using the formula

Un+2(r) = rUn+1(r) + sUn(r), s ∈ {±1},

that the sum of the absolute values of the coefficients of Un(r) is ≤ 2n−1. Thus, for
k ≤ 11, m ≤ n ≤ 47 and (k,m, n) 6= (1, 1, 1), the polynomial

aUk(r)2 + bUm(r)2 + cUn(r)2 − dUk(r)Um(r)Un(r)

is nonzero and has integer coefficients the sum of which in absolute values is at
most

4 ·A · (247)2 × 211 < 2105A,

so its maximal positive integer root (which divides the coefficient of the monomial
of the smallest degree participating in the polynomial) is also at most 2105A. Thus,
r ≤ 2105A. This completes the proof of the second part of (2.ii) of Theorem 1.1.

It remains to study the case when the expression in the right–hand side of (22)
is zero. In this case, s = 1, n− i is odd and aU2

k = cU2
i . We evaluate (21) in n− i

and get

U2
n−i − UnUn−2i = (−1)nU2

i .

This formula holds also if n < 2i because the sequence {U`}`≥0 can be extended
to negative numbers either by recurrence or by allowing n to be negative in the
formula (3). We then get Un | bU2

n−i − (−1)nbU2
i . Since also Un | aU2

k + bU2
n−i,

we get that Un | aU2
k + (−1)nbU2

i . The previous argument shows again that n is
bounded, and the bounds indicated at (2.ii) hold unless aU2

k = (−1)n+1bU2
i . In

this last case, n is odd, i is even, and b = c. Inserting U2
n − Un−iUn+i = −U2

i into

aU2
k + bU2

n−i + bU2
n = dUkUn−iUn,

we get

aU2
k + bU2

n−i + bUn−iUn+i − bU2
i = dUkUn−iUn+i.

Since aU2
k = bU2

i , we can simplify both sides of the above relation by Un−i to get

Un+i = (dUk/b)Un − Un−i.

But it is well–known and easy to prove using the Binet formula that in fact the
formula Un+i = ViUn−Un−i holds for all n > i. Thus, we have ViUn = (dUk/b)Un,
so Vi = dUk/b. This gives all the conditions from part (2.i) of Theorem 1.1. Further
if all the above conditions are met and n > i is odd, then one can work backwards
from the last relation

Un+i = ViUn − Un−i = (dUk/b)Un − Un−i,
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through the algebraic manipulations we have just done, and conclude that it leads
to

aU2
k + bU2

n−i + cU2
n = dUkUn−iUn,

which is what we wanted. Finally, it remains to deal with the statement about r.
Since aU2

k = bU2
i , if a 6= b, then it follows that k 6= i. We assume without loss of

generality that a > b. Then i > k, so A ≥ a/b = (Ui/Uk)2 ≥ (Ui/Ui−1)2 ≥ (r−1)2,
where we used the fact that Ui = rUi−2 + sUi−2 ≥ (r− 1)Ui−1 (note that i− 1 ≥ 1

since i is even). Thus, we get r < 1 +
√
A < 2A in this case. Thus, it remains to

treat the case when a = b = c so k = i. Then dUi/b = Vi. It is well-known and it
follows from the formula

V 2
i −∆U2

i = 4(−s)i

that gcd(Ui, Vi) = 1, 2. Thus, Vi | 2d, showing that 2A ≥ 2d ≥ αi + α−i > α2, so

α <
√

2A, therefore r < α+ 1 < 1 +
√

2A < 2A. So, indeed r < 2A in case (2.i).
This finishes the proof of the theorem.

3. Particular cases

Take (a, b, c, d) = (1, 1, 1, 3). Then part (1) of Theorem 1.1 gives us the bounds
k ≤ 25, i ≤ 32. For (2.i), we want Uk = Ui and 3Ui = Vi. Since gcd(Ui, Vi) = 1, 2,
it follows that either (Ui, Vi) = (1, 3) or (Ui, Vi) = (2, 6). Since i is even, r | Ui.
Thus, we have i = 2, Ui = r, and we get that either r = 1, which is the Fibonacci
case, or r = 2, which is the Pell case. Here, Uk = 1, 2, respectively, and m,n
are consecutive odd integers. We have encountered the known parametric families
and the above arguments show that there are no other parametric families. The
sporadic solutions should have, by (2.ii), n ≤ 109. We generated all the polynomials

(27) Uk(r)2 + Um(r)2 + Un(r)2 − 3Uk(r)Um(r)Un(r)

for all 1 ≤ k ≤ 25, k ≤ m ≤ 109, n ∈ [m,min{m+32, 109}] for both cases s ∈ {±1}
and computed candidates for their integer roots r. In Lemma 2.4 it was shown
that the above polynomial was non-zero for (k,m, n) 6= (1, 1, 1) by simultaneously
looking at its degree, leading term and last coefficient. In order to bound r, we
should understand better the last non-zero coefficient. Here is a partial result that
does not do the job in all cases but it suffices for some applications. It is based on
the formula

Um(r) =
∑

0≤k≤m
k 6≡m (mod 2)

(
(m+ k − 1)/2

k

)
rk, when s = 1

(see [2]). For s = −1, the coefficients of Um(r) are the same as above in absolute
values but their signs are alternating (starting with the leading coefficient whose
value is 1). The following lemma is then immediate.

Lemma 3.1. The last coefficient (free term) of the polynomial shown at (24) is

(i) a+ b+ c± d if k,m, n are all odd;
(ii) One of a, b, c, a+ b, a+ c, b+ c if at least one of k,m, n is even but not all.

(iii) In case all k,m, n are even, the coefficient of r2 is

±(a(k/2)2 + b(m/2)2 + c(n/2)2).
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In case k,m, n are all odd, and the free term is 0, then the coefficient of r2 is one
of

±
(

(2a− d)

(
(k + 1)/2

2

)
+ (2b− d)

(
(m+ 1)/2

2

)
+ (2c− d)

(
(n+ 1)/2

2

))
.

In particular, for the polynomial shown at (27), the last coefficient (free term)
is a nonzero integer of absolute value at most 6 unless either all m,n, k are even or
odd. If they are all even, then r divides k2 +m2 + n2 and if they are all odd, then
r divides (k2 − 1) + (m2 − 1) + (n2 − 1) which is nonzero for (k,m, n) 6= (1, 1, 1).
Thus, one can just loop over all the possibilities for (k, n,m) and then over all the
possible divisors r of the above numbers and check whether (27) evaluates to 0. No
nontrivial examples were found. So, we proved the following numerical corollary.

Corollary 3.1. If (a, b, c, d) = (1, 1, 1, 3) then any nontrivial solution of equation
(1) has r = 1, 2 so it is of the form (1, F2t−1, F2t+1) or (2, P2t−1, P2t+1) for some
positive integer t.

Let us now take a look at the quadruples (2) studied by Tengely. In this case, if
there were infinitely many solutions, in a quadruple (a, b, c, d), we would need, up to
permutations among a, b, c, that two of them coincide and that the product of the
third one with any of these two is a square (because of the conditions aU2

k = bU2
i ,

which implies that ab is a square, and further b = c). Of the quadruples from (2)
only (a, b, c, d) = (1, 1, 1, 1) has this property. For it, we get Uk = Ui and dUi = Vi.
Thus, Ui = Vi or 2Ui = Vi. Since gcd(Ui, Vi) = 1, 2, we get that Vi = 2, 4. However,

since i is even, Vi = αi +α−i > α2 > 4 except for α = (1 +
√

5)/2 for which Vi ≤ 4
only for i = 2, but then V2 = 3 6∈ {U2, 2U2} = {2, 4}. So, these equations do not
have parametric solutions. They might have sporadic solutions. For them, A = 6,
so Theorem 1.1 (i) and (iii) tell us that k ≤ 31, i ≤ 39, n ≤ 131. As for the r, we
look at the polynomials

aUk(r)2 + bUm(r)2 + cUn(r)2 − dUk(r)Um(r)Un(r).

By Lemma 3.1, if at least one of k,m, n is even but not all are, the last coefficient
is non-zero and smaller than a+ b+ c ≤ 12 in absolute value. If all k,m, n are even,
then r divides an2+bm2+ck2, over all permutations of a, b, c. If all k,m, n are odd,
then the last coefficient is non-zero and smaller than 12 in absolute value except for
(a, b, c, d) = (1, 1, 2, 4), (1, 2, 3, 6) for which it might be 0. If this is the case, then the
coefficient of r2 is, up to sign, (2a−d)(u2−1)/8+(2b−d)(v2−1)/8+(2c−d)(w2−1)/8,
where (u, v, w) is a permutation of (k,m, n). Since in both cases d = 2c, it follows
that this is zero only if u = v = 1. This entails k = m = 1, so x = y = 1, which leads
to z = 1, so n = 1 as well, a trivial solution. So, r is a divisor of one of the above non-
zero numbers as {u, v} range over all subsets with two elements of {k,m, n}. Now
we have everything we need to run a calculation. Only small solutions were found,
namely for (a, b, c, d) = (1, 1, 1, 1), (1, 1, 2, 2), (1, 1, 5, 5), all solutions of the form
(x, y, z) = (Uk(r), Um(r), Un(r)) have z ≤ 3, for (a, b, c, d) = (1, 1, 2, 4), (1, 2, 3, 6),
they all have z ≤ 5 as in Tengely’s calculations where only the case r = 1 (Fibonacci
numbers) was allowed. So, we proved the following corollary.

Corollary 3.2. Let (x, y, z) = (Uk(r), Um(r), Un(r)) be a solution of (1), where
(a, b, c, d) ∈ {(1, 1, 1, 1), (1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 5, 5), (1, 2, 3, 6)}. We then have
max{x, y, z} ≤ 5.
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tro de Ciencias Matemáticas, UNAM, Morelia, Mexico
E-mail address: florian.luca@wits.ac.za


	1. Introduction
	2. The proof of Theorem 1.1
	3. Particular cases
	4. Acknowledgements
	References

